The relation between pressure and volume

Lab-report in Physics
Preformed 98-02-25
In this experiment we are to prove the relation $\mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{p}_{2} \mathrm{v}_{2}$. To prove this we use a piston and weights of different masses. The piston is then pulled down by the weights and we measure the distance (x). We then make a relation between the mass and the distance x. Here is the formula derived:

$$
\begin{aligned}
& \Delta p=\frac{m g}{A} \\
& p_{1} v_{1}=p_{2} v_{2} \\
& p_{1} v_{1}=\left(p_{1}-\Delta p\right) v_{2} \\
& p_{1} A d=\left(p_{1}-\Delta p\right) A(d+x) \\
& p_{1} d=(d+x)\left(p_{1}-\frac{m g}{A}\right) \\
& p_{1} d=(d+x)\left(\frac{p_{1} A-m g}{A}\right) \\
& p_{1} d A=(d+x)\left(p_{1} A-m g\right) \\
& d+x=\frac{p_{1} d A}{p_{1} A-m g} \\
& x=\frac{p_{1} d A}{p_{1} A-m g}-d
\end{aligned}
$$

$$
\mathrm{m} \text { is the mass of the weight }
$$

$$
\mathrm{A} \text { is the area of the piston }
$$

$$
\mathrm{d} \text { is the initial distance, where the piston was initially }
$$

$$
\mathrm{x} \text { is the distance the piston has moved }
$$

So now it is just to collect data and look for a pattern and see if it match the formula. Here is the data:

Area $=7,94 \cdot 10^{-4} \mathrm{~m}^{2}$
$\mathrm{p}_{1}=101300 \mathrm{~Pa}$
$\mathrm{d}=0,03 \mathrm{~m}$
$\mathrm{g}=9,82 \mathrm{~m} / \mathrm{s}^{2}$

$\mathrm{m}(\mathrm{kg})$	$\mathrm{x}(\mathrm{mm})$
0,5	2
1	5
2	11
3	18
4	40
5	49

As you can see this curve is most likely to be linear, and so also according to the formula.

