Lab-report

Date: 98-10-05

Hess' Law:

Work to be done:

Find enthalpy change by measuring temperature change of a reaction.

Chemicals and apparatus:

Thermometer
Scale
Isolator
NaOH , solid
$\mathrm{NaOH}, 0.50 \mathrm{M}$ solution
Acetic acid, 0.50 M and 0.25 M

Lab:

Reaction 1)
The temperature of 200 ml water that I poured into the isolator was $23.0^{\circ} \mathrm{C}$. To that I added 1.97 g solid NaOH and let the reaction take place. After a while I measured the temperature to $24.9^{\circ} \mathrm{C} \rightarrow \triangle \mathrm{T}=1.9^{\circ} \mathrm{C}$. The number of mole NaOH is $1.97 / 40=0.049 \mathrm{~mol}$.

Reaction 2)
In this experiment I used 100 ml 0.50 M acetic acid, and to that I added 100 ml 0.50 M liquid NaOH . The temperature of the acetic acid was $23^{\circ} \mathrm{C}$ and the temperature of the NaOH was $22^{\circ} \mathrm{C}$. So the average, and the number I use will be $22.5^{\circ} \mathrm{C}$. After the reaction the temperature of the solution was $25^{\circ} \mathrm{C}$, so $\triangle \mathrm{T}=$ $2.5^{\circ} \mathrm{C}$. The number of mole NaOH is $0.50 * .100=0.050 \mathrm{~mol}$.

Reaction 3)

In the third reaction I used 200 ml 0.25 M acetic acid with a temperature of $22.5^{\circ} \mathrm{C}$, that I added to 2.00 g NaOH . The temperature after the reaction was $27^{\circ} \mathrm{C}$, so $\triangle \mathrm{T}=4.5^{\circ} \mathrm{C}$. And the number of mole NaOH in the reaction was 2.00 / $40=0.05 \mathrm{~mol}$.

The same amount NaOH has been used in all three reactions, and the same amount of liquid also, 200 ml . In reaction two and three is also the amount acetic acid the same.

I can now calculate the enthalpy changes in each case:
$\mathrm{H}=\mathrm{c} \mathrm{m}$ T, and since the same mass has been used, and since I can use the same c in all three cases $\mathrm{H}=0.84 \mathrm{~T}(\mathrm{c}=4.2, \mathrm{~m}=0.200 \mathrm{~g})$

$$
\begin{aligned}
& \triangle \mathrm{H}_{1}=1.596 \\
& \triangle \mathrm{H}_{2}=2.1 \\
& \triangle \mathrm{H}_{3}=3.78
\end{aligned}
$$

According to Hess' Law you should be able to calculate the enthalpy change for a reaction which is the sum of two (or more) reactions with known enthalpy change, so:

$$
\begin{align*}
& \mathrm{NaOH}_{(\mathrm{s})} \rightarrow \mathrm{NaOH}_{(\mathrm{aq})} \tag{1}\\
& \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \tag{2}\\
& \mathrm{NaOH}_{(\mathrm{s})}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \tag{3}\\
& (3)-(2)=(1)
\end{align*}
$$

and we can also see that $\triangle H_{3}-\Delta H_{2} \approx \Delta H_{1}$
Other results in class:

Group	$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	$\mathbf{H}_{\mathbf{3}}$	$\mathbf{H}_{\mathbf{3}}-\mathbf{H}_{\mathbf{2}}$
$\mathbf{1}$	1.26	2.1	3.36	1.26
$\mathbf{2}$	1.67	2.3	3.27	1.47
$\mathbf{3}$	6.82	1.89	8.4	6.51
$\mathbf{4}$	1.26	2.94	4.2	1.26
$\mathbf{5}$	1.60	2.1	3.78	1.68
$\mathbf{6}$	1.596	2.1	3.36	3.36
$\mathbf{7}$	2.5	2.1	4.2	2.1

(The results of group 3 was probably because they isolated more.)

