Lab-report #7

Date: 97-12-05 Time: 12.50 - 14.40

Determination of ethanoic acid content of vinegar:

Work to be done:

To find out how much ethanoic acid common vinegar contains.

Chemicals and apparatus:

- Vinegar
- Standard flask (100 cm^3) _
- Standard sodium hydroxide solution (0.1M)
- Phenolphthalein indicator
- Balance (accurate to 0.01 g)
- Pipette $(25 \text{ cm}^3 \text{ and } 50 \text{ cm}^3)$ -
- Conical flask (100 cm^3)
- Wash bottle/distilled water _
- Dropping pipette -

Lab:

First I weighted 20.09 grams of vinegar into a 100 cm³ standard flask and added distilled water until I reached the 100 cm³ mark, and mixed the solution very well. I then took 10 cm³ of this solution and used it in a titration with the 0.1M sodium hydroxide solution, using phenolphthalein to indicate the acid-base equilibrium.

I did this titration three times and the results were 19 cm³, 19.2 cm³ and 20.7 cm³ (average 19.63 cm^3).

I then use the formula n = c * v for the amount of NaOH; $19.63 * 10^{-3} * 0.10 = 1.963 * 10^{-3}$ mol And since the equation for the reaction is $NaOH + CH_3COOH \rightarrow CH_3COONa + H_2O$ there must be the same amount of CH₃COOH and $1.963 * 10^{-3}$ mol of CH₃COOH weight; $1.963 * 10^{-3} * 60 = 0.11778g CH_3COOH / 10 cm^3 * 10 = 1.1778g / 100 cm^3$ $\frac{1.1778g}{100} = 5.86\%$

20.09g

The conclusion is that vinegar contains 5.86% ethanoic acid. On the bottle of vinegar it said that is contained 6%, so I think that the experiment was a success.