Lab-report \# 7

Date: 97-12-05 Time: 12.50-14.40

Determination of ethanoic acid content of vinegar:

Work to be done:

- To find out how much ethanoic acid common vinegar contains.

Chemicals and apparatus:

- Vinegar
- Standard flask ($100 \mathrm{~cm}^{3}$)
- Standard sodium hydroxide solution (0.1 M)
- Phenolphthalein indicator
- Balance (accurate to 0.01 g)
- Pipette $\left(25 \mathrm{~cm}^{3}\right.$ and $\left.50 \mathrm{~cm}^{3}\right)$
- Conical flask ($100 \mathrm{~cm}^{3}$)
- Wash bottle/distilled water
- Dropping pipette

Lab:

First I weighted 20.09 grams of vinegar into a $100 \mathrm{~cm}^{3}$ standard flask and added distilled water until I reached the $100 \mathrm{~cm}^{3}$ mark, and mixed the solution very well. I then took $10 \mathrm{~cm}^{3}$ of this solution and used it in a titration with the 0.1 M sodium hydroxide solution, using phenolphthalein to indicate the acid-base equilibrium.

I did this titration three times and the results were $19 \mathrm{~cm}^{3}, 19.2 \mathrm{~cm}^{3}$ and $20.7 \mathrm{~cm}^{3}$ (average $19.63 \mathrm{~cm}^{3}$).

I then use the formula $\mathrm{n}=\mathrm{c} * \mathrm{v}$ for the amount of NaOH ;

$$
19.63 * 10^{-3} * 0.10=1.963 * 10^{-3} \mathrm{~mol}
$$

And since the equation for the reaction is

$$
\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

there must be the same amount of $\mathrm{CH}_{3} \mathrm{COOH}$
and $1.963 * 10^{-3} \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ weight;

$$
1.963 * 10^{-3} * 60=0.11778 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH} / 10 \mathrm{~cm}^{3} * 10=1.1778 \mathrm{~g} / 100 \mathrm{~cm}^{3}
$$

$\frac{1.1778 g}{20.09 g} * 100=5.86 \%$
The conclusion is that vinegar contains 5.86% ethanoic acid. On the bottle of vinegar it said that is contained 6%, so I think that the experiment was a success.

