Lab-report \# 6

Date: 97-11-21 Time: 12.50 - 14.20

How to find the molar mass of the gas in a lighter:

Work to be done:

- To find out the molar mass of an element you have to find out the mass and volume.

Chemicals and apparatus:

- Common lighter
- Bowl
- Cylinder with scale
- A scale

Lab:

In this lab I needed two formulas. First: $\mathrm{n}=\mathrm{m} / \mathrm{M}$. Second: $\mathrm{P} V=\mathrm{n} R \mathrm{~T}$, where $\mathrm{R}=8.31$. I can combine these two to make one; $\mathrm{PV}=(\mathrm{m} / \mathrm{M}) \mathrm{RT}$ or $\mathrm{M}=\mathrm{m} \mathrm{RT} / \mathrm{P} \mathrm{V}$.

First I weighted the lighter $\left(\mathrm{w}_{1}\right)$ to 16.98 . Then I filled both the bowl and the cylinder with water and turned the cylinder upside-down IN the bowl so that the cylinder still is filled with water.

I then putted the lighter under the cylinder in the water and started to empty the lighter of the gas, so that the gas was collected in the cylinder. After a while I could measure the volume of the gas to $250 \mathrm{~cm}^{3}$.

I then dried and weighted the lighter again. Now the mass was 16.40 . This may not be accurate because the lighter may contain some water.

This means that $250 \mathrm{~cm}^{3}$ gas weights 0.58 g . Now, let's put the digits into the formula:

$$
\begin{aligned}
M & =\frac{m R T}{P V} \\
M & =\frac{0.58 * 8.31 * 293.75}{102.6 * 0.25}=55.2
\end{aligned}
$$

Since there is no gas that has the molar mass of 55.2 , but Butane that has 58 , I would say that the lighter contains primary Butane, and some other gases.

