Lab-report # 5

Date: 97-11-14 Time: 12.50-14.20

Chemical equilibria: Work to be done:

- By experiments find out how chemical equilibria works.

Chemicals and apparatus:

- Two beakers
- Five test-tubes
- Kaliumtiocyanat, KSCN
- 0.002M Kaliumtiocyanatsolution, KSCN + H₂O
- Dinatriumfosfat, Na₂HPO₄
- 0.002M Iron(III)nitratesolution, FeNO₃
- 0.2M Silvernitratesolution, AgNO₃

Lab:

Lab 1

One test-tubes is filled half of distilled water (A) and another with kaliumtiocyanatsolution (B). Both solutions are colorless. Solution (B) contains SCN⁻. I add five drops of iron(III)nitratesolution to both test-tubes and the kaliumtiocyanatsolution turns dark-red. The explanation is that there has been a reaction in solution (B), Fe³⁺ + SCN⁻ \rightarrow FeSCN²⁺, where FeSCN²⁺ has a dark-red color.

Lab 2

The solution in test-tube (B) is placed in five other test-tubes. I will now perform four different experiment and then compare with the original solution, and therefor I label the test-tubes a, b, c, d and e.

In test-tube (a) I add some KSCN (cristals) and therefor raise the concentration of SCN^{-} in the solution. The visible change is that the solution turn darker red. And since $FeSCN^{2+}$ is red, the conclusion is that the solution contains more $FeSCN^{2+}$.

To test-tube (c) I add some FeNO3 and the concentration of Fe3+ is increased and the solution turns darker red \rightarrow the concentration of FeSCN2+ is higher. Since no more SCN- has been added the ratio Fe3+ and SCN- must be in equilibrium. The solution now contains Fe3+, SCN-, FeSCN2+, NO3- and K+.

To test-tube (d) I add five drops of silvernitrate, AgNO₃, and the solution is turning brighter – the concentration of FeSCN²⁺ must decrease. There seems to be a fight about the SCN⁻ions, both Ag⁺ and Fe³⁺ want them, but the Ag⁺ions seems to win and form a salt, AgSCN, that is hard diluted in water. The effect is, as described earlier, that the concentration of FeSCN⁻ has decreased and the color of the solution is lighter red. The reaction formula is Fe³⁺ + SCN⁻ \rightarrow FeSCN²⁺, the reaction is to the left and the reaction is reversible. In the last test-tube I add some dinatriumhydrofosphate, Na₂HPO₄, and the solution becomes colorless, there is no more FeSCN^{2+} . The concentration of Fe^{3+} has decreased. In the reaction $\text{Fe}^{3+} + \text{SCN}^- \rightarrow \text{FeSCN}^{2+}$, the reaction is to the left.

CONCLUTION:

In the reactions above I have changed the equilibrium by changing the concentration of different substances.